首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7543篇
  免费   580篇
  国内免费   775篇
  8898篇
  2024年   35篇
  2023年   213篇
  2022年   265篇
  2021年   322篇
  2020年   300篇
  2019年   323篇
  2018年   292篇
  2017年   273篇
  2016年   291篇
  2015年   275篇
  2014年   332篇
  2013年   615篇
  2012年   285篇
  2011年   288篇
  2010年   259篇
  2009年   332篇
  2008年   368篇
  2007年   385篇
  2006年   315篇
  2005年   315篇
  2004年   285篇
  2003年   254篇
  2002年   202篇
  2001年   170篇
  2000年   126篇
  1999年   126篇
  1998年   124篇
  1997年   109篇
  1996年   113篇
  1995年   117篇
  1994年   104篇
  1993年   83篇
  1992年   77篇
  1991年   83篇
  1990年   59篇
  1989年   69篇
  1988年   64篇
  1987年   61篇
  1986年   48篇
  1985年   71篇
  1984年   84篇
  1983年   45篇
  1982年   65篇
  1981年   52篇
  1980年   44篇
  1979年   42篇
  1978年   32篇
  1977年   26篇
  1976年   27篇
  1974年   17篇
排序方式: 共有8898条查询结果,搜索用时 15 毫秒
991.
滞育是部分昆虫固有的适应逆境胁迫的遗传属性,七星瓢虫具有显著的滞育现象。本文以七星瓢虫雌成虫为试材,研究正常发育、滞育及滞育解除后3组处理试虫糖、脂、蛋白等关键代谢物质含量波动规律,总结滞育期间的代谢适应特点,解析其与过冷却能力的相关性,探索滞育对七星瓢虫逆境胁迫耐受力的促升效应,丰富七星瓢虫的滞育基础理论研究。利用物质干湿重差数法测定七星瓢虫的含水量;利用氯仿-甲醇(体积比为2∶1)法抽提除去自由水个体的脂肪;总糖、海藻糖、甘油、山梨醇及总蛋白的测定采用标准曲线法,利用SUN-II型智能昆虫过冷却点测定仪测定七星瓢虫的过冷却点(supercooling point,SCP)。结果表明,七星瓢虫滞育组含水量(58.11%±6.55%)显著低于正常发育组(68.49%±2.26%)和滞育解除组(65.84%±4.02%)(F=8.15,P0.01),滞育解除后含水量恢复至正常发育组水平;滞育组总糖(10.60±0.54μg/mg)、糖原(8.72±0.62μg/mg)、脂肪(173.66±19.01μg/mg)含量远远高于正常发育组和滞育解除组(F=46.57,P=0.0006;F=114.25,P0.0001;F=8.48,P0.01);滞育组总蛋白含量(49.20±3.80μg/mg)显著低于正常发育组(71.02±6.15μg/mg)和滞育解除组(69.45±4.66μg/mg)(F=46.57,P=0.0006);滞育组中海藻糖(1.31±0.27μg/mg)、甘油(1.74±0.50μg/mg)、山梨醇(9.84±3.02μg/mg)含量与正常发育组、滞育解除组无显著性差异(F=0.79,P=0.4946;F=1.33,P=0.3004;F=1.69,P=0.2387)。七星瓢虫在滞育条件下其过冷却点(-16.53℃±1.44℃)显著低于正常发育组(-14.07℃±1.33℃)和滞育解除组(-15.29℃±2.10℃)(F=13.47,P0.0001),经过滞育低温驯化后滞育解除组过冷却点较对照组有所降低。滞育诱发七星瓢虫发生显著的代谢适应,蛋白含量显著降低,抑制新陈代谢进程;糖脂含量显著升高,保障滞育维持及解除后发育的能量需求;七星瓢虫滞育属糖原积累型;滞育个体过冷却点大幅下降,耐寒性显著提升。  相似文献   
992.
When bacteria are cultured in medium with multiple carbon substrates, they frequently consume these substrates simultaneously. Building on recent advances in the understanding of metabolic coordination exhibited by Escherichia coli cells through cAMP‐Crp signaling, we show that this signaling system responds to the total carbon‐uptake flux when substrates are co‐utilized and derive a mathematical formula that accurately predicts the resulting growth rate, based only on the growth rates on individual substrates.  相似文献   
993.
The olive tree (Olea europaea L., Oleaceae) is one of the most important fruit trees in Mediterranean basin and has been associated with numerous biological assets. These effects have been mainly attributed to certain phenolic compounds found in fruits, olive oil and by-products of olive oil production. However, other Olea organs such as stems, roots and drupe stones have received little attention leading to limited knowledge about their phytochemical content. Thus, the main goal of the current study was the investigation of the chemical composition of diverse organs from two O. europaea varieties (i.e. Koroneiki and Chetoui) using combinations of modern analytical techniques. A fast UHPLC-DAD-FLD method was developed and applied for the profiling of different extracts of O. europaea organs as well as for the quantification of oleuropein. In addition, a dereplication strategy was developed using an Orbitrap platform (UHPLC-ESI-HRMS/MS) aiming to further characterization of the contained secondary metabolites. In total, 86 molecules were identified including compounds described for the first time in O. europaea such as coumarins. Some compounds were found to be organ specific such as nuzhenide derivatives in stone, flavonoids in leaves and oleuropein which was mainly found in Olea roots, in both varieties. Overall, it is noticeable that except olive oil, diverse organs of olive tree might comprise an alternative and valuable source of biologically active compounds.  相似文献   
994.
Cancer stem cells (CSCs) represent a subpopulation of tumor cells endowed with self-renewal capacity and are considered as an underlying cause of tumor recurrence and metastasis. The metabolic signatures of CSCs and the mechanisms involved in the regulation of their stem cell-like properties still remain elusive. We utilized nasopharyngeal carcinoma (NPC) CSCs as a model to dissect their metabolic signatures and found that CSCs underwent metabolic shift and mitochondrial resetting distinguished from their differentiated counterparts. In metabolic shift, CSCs showed a greater reliance on glycolysis for energy supply compared with the parental cells. In mitochondrial resetting, the quantity and function of mitochondria of CSCs were modulated by the biogenesis of the organelles, and the round-shaped mitochondria were distributed in a peri-nuclear manner similar to those seen in the stem cells. In addition, we blocked the glycolytic pathway, increased the ROS levels, and depolarized mitochondrial membranes of CSCs, respectively, and examined the effects of these metabolic factors on CSC properties. Intriguingly, the properties of CSCs were curbed when we redirected the quintessential metabolic reprogramming, which indicates that the plasticity of energy metabolism regulated the balance between acquisition and loss of the stemness status. Taken together, we suggest that metabolic reprogramming is critical for CSCs to sustain self-renewal, deter from differentiation and enhance the antioxidant defense mechanism. Characterization of metabolic reprogramming governing CSC properties is paramount to the design of novel therapeutic strategies through metabolic intervention of CSCs.  相似文献   
995.
Ketamine, an antagonist of N‐methyl‐d ‐aspartate receptors, has produced rapid antidepressant effects in patients with depression, as well as in animal models. However, the extent and duration of the antidepressant effect over longer periods of time has not been considered. This study evaluated the effects of single dose of ketamine on behavior and oxidative stress, which is related to depression, in the brains of adult rats subjected to maternal deprivation. Deprived and nondeprived Wistar rats were divided into four groups nondeprived + saline; nondeprived + S‐ketamine (15 mg/kg); deprived + saline; deprived + S‐ketamine (15 mg/kg). A single dose of ketamine or saline was administrated during the adult phase, and 14 days later depressive‐like behavior was assessed. In addition, lipid damage, protein damage, and antioxidant enzyme activities were evaluated in the rat brain. Maternal deprivation induces a depressive‐like behavior, as verified by an increase in immobility and anhedonic behavior. However, a single dose of ketamine was able to reverse these alterations, showing long‐term antidepressant effects. The brains of maternally deprived rats had an increase in protein oxidative damage and lipid peroxidation, but administration of a single dose of ketamine reversed this damage. The activities of antioxidant enzymes superoxide dismutase and catalase were reduced in the deprived rat brains. However, ketamine was also able to reverse these changes. In conclusion, these findings indicate that a single dose of ketamine is able to induce long‐term antidepressant effects and protect against neural damage caused by oxidative stress in adulthood rats following maternal deprivation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1268–1281, 2015  相似文献   
996.
Given the inherent difficulties in investigating the mechanisms of tumor progression in vivo, cell-based assays such as the soft agar colony formation assay (hereafter called soft agar assay), which measures the ability of cells to proliferate in semi-solid matrices, remain a hallmark of cancer research. A key advantage of this technique over conventional 2D monolayer or 3D spheroid cell culture assays is the close mimicry of the 3D cellular environment to that seen in vivo. Importantly, the soft agar assay also provides an ideal tool to rigorously test the effects of novel compounds or treatment conditions on cell proliferation and migration. Additionally, this assay enables the quantitative assessment of cell transformation potential within the context of genetic perturbations. We recently identified peptidylarginine deiminase 2 (PADI2) as a potential breast cancer biomarker and therapeutic target. Here we highlight the utility of the soft agar assay for preclinical anti-cancer studies by testing the effects of the PADI inhibitor, BB-Cl-amidine (BB-CLA), on the tumorigenicity of human ductal carcinoma in situ (MCF10DCIS) cells.  相似文献   
997.
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.  相似文献   
998.
The oxidant Mn3+‐malonate, generated by the ligninolytic enzyme versatile peroxidase in a two‐stage system, was used for the continuous removal of endocrine disrupting compounds (EDCs) from synthetic and real wastewaters. One plasticizer (bisphenol‐A), one bactericide (triclosan) and three estrogenic compounds (estrone, 17β‐estradiol, and 17α‐ethinylestradiol) were removed from wastewater at degradation rates in the range of 28–58 µg/L·min, with low enzyme inactivation. First, the optimization of three main parameters affecting the generation of Mn3+‐malonate (hydraulic retention time as well as Na‐malonate and H2O2 feeding rates) was conducted following a response surface methodology (RSM). Under optimal conditions, the degradation of the EDCs was proven at high (1.3–8.8 mg/L) and environmental (1.2–6.1 µg/L) concentrations. Finally, when the two‐stage system was compared with a conventional enzymatic membrane reactor (EMR) using the same enzyme, a 14‐fold increase of the removal efficiency was observed. At the same time, operational problems found during EDCs removal in the EMR system (e.g., clogging of the membrane and enzyme inactivation) were avoided by physically separating the stages of complex formation and pollutant oxidation, allowing the system to be operated for a longer period (~8 h). This study demonstrates the feasibility of the two‐stage enzymatic system for removing EDCs both at high and environmental concentrations. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:908–916, 2015  相似文献   
999.
Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness‐costly metabolites through natural selection. In this strategy, metabolic cross‐feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co‐evolved wild‐type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B‐group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange.  相似文献   
1000.
An assembled cDNA coding for the putative single-subunit NADH dehydrogenase (NDX) of Ciona intestinalis was introduced into Drosophila melanogaster. The encoded protein was found to localize to mitochondria and to confer rotenone-insensitive substrate oxidation in organello. Transgenic flies exhibited increased resistance to menadione, starvation and temperature stress, and manifested a sex and diet-dependent increase in mean lifespan of 20–50%. However, NDX was able only weakly to complement the phenotypes produced by the knockdown of complex I subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号